

Contents lists available at SciVerse ScienceDirect

Journal of Fluorine Chemistry

Graphical Abstracts/J. Fluorine Chem. 140 (2012) 1–6

5HF is recyclable. ► Only HF and electricity were consumed.

J. Fluorine Chem., 140 (2012) 38 Synthesis and upconversion properties of Ln³⁺ doped YOF nanofibers Renyuan Yang, Guanshi Qin, Dan Zhao, Kezhi Zheng, Weiping Qin State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun ž 130012. PR China ▶ YOF nanofibers have been prepared via electrospinning. ▶ The calcinated fibers keep morphology of fiber and are packed with fine grains. ► With the excitation from 980 nm, YOF:Yb³⁺,Tm³⁺ and YOF:Yb³⁺,Er³⁺ nanofibers emit blue and red upconversion fluorescence, respectively. 300 400 500 600 700 Wavel ngth (

Direct trifluoro-methoxylation of aromatics with perfluoro-methyl-hypofluorite

Francesco Venturini^a, Walter Navarrini^{ab}, Antonino Famulari^a, Maurizio Sansotera^a, Patrizia Dardani^c, Vito Tortelli^c

^aDipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli, 7, 20133 Milan, Italy

^bConsorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze, Italy

^cSolvay Specialty Polymers Italy, R&D Center, Viale Lombardia 20, 20021 Bollate (Milano), Italy

▶ Bind, in one synthetic step, the trifluoro-methoxy group to a mono-substituted

aromatic substrate. ► In the experimental condition adopted the free radical process is favored against the electrophilic addition. ► Rearomatization is a very efficient propagation reaction. ► The olefin-induced radical mechanism increases the production of trifluoromethoxy radicals and hence the amount of aromatic ether.

Preparation and spectroscopic properties of some new diaroylmethanatoboron difluoride derivatives

Dun-Jia Wang, Ben-Po Xu, Xian-Hong Wei, Jing Zheng

Hubei Key Laboratory of Pollutant and Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, PR China

▶ Preparation and characterization of the diaroylmethanes and their BF_2 complexes. ▶ Spectroscopic investigations of the diaroylmethanatoboron difluoride compounds. ▶ Strong fluorescence of BF_2 complexes in the 400–500 nm range.

Synthesis and characterization of novel polyfluorinated porphyrazines

Neriman Ağgün, Ergün Gonca

Russia

Department of Chemistry, Fatih University, TR34500 B. Cekmece, Istanbul, Turkey

▶ New polyfluorinated porphyrazine molecules are synthesized. ▶ Solubility of metallo porphyrazines in common solvents is enhanced. ▶ No new Q band absorptions are observed in the aggregation study. ▶ The presence of an electron donating group causes a bathochromic shift on Q bands.

Reaction of N-sulfinyltrifluoromethanesulfonamide with carbodiimides: Formation of N-trifluoromethanesulfonyl-2,4-dialkyl-1,2,4-thiadiazetidin-3-imine 1-oxides Bagrat A. Shainyan, Ljudmila L. Tolstikova A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of Russian Academy of Sciences, 1 Favorsky Street 664033, Irkutsk,

► Condensation of N-sulfinyltriflamide with N,N'-dialkylcarbodiimides was studied. ► The products were shown to have the structure of symmetrically substituted N-triflyl-2,4-dialkyl-1,2,4-thiadiazetidin-3-imine 1-oxides. ► The mechanism including $[2\pi + 2\pi]$ cycload-dition and the ring opening – ring closure of the intermediate cycloadducts was proposed.

J. Fluorine Chem., 140 (2012) 54

J. Fluorine Chem., 140 (2012) 49

Graphical Abstracts

Clickable PEG conjugate obtained by "clip" photochemistry: Synthesis and characterization by quantitative ¹⁹F NMR

Vincent Pourcelle^a, Cécile S. Le Duff^a, Hélène Freichels^b, Christine Jérôme^b, Jacqueline Marchand-Brynaert^a

^aInstitut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Bâ timent Lavoisier, Place Louis Pasteur L4.01.02, B-1348 Louvain-la-Neuve, Belgium

^bCenter for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman B6, B-4000 Liège, Belgium

▶ Grafting of NHS esters on alkyne terminated PEG with trifluoromethylphenyl diazirine.

▶ Preservation of the alkyne function during chemical derivatizations. ▶ Easy conjugation of fluorinated probe and peptidomimetic on PEG. ▶ Development, validation and application of a quantitative ¹⁹F NMR protocol.

Synthesis and upconversion luminescence properties study of NaYbF $_4$:Tm $^{3+}$ crystals with different dopant concentration

Tao Jiang, Weiye Song, Shusen Liu, Weiping Qin

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, PR China

► Tm^{3+} doped $NaYbF_4$ crystals emitted intense UV UC and weak visible UC emissions. ► The affect of Na^+ cation on the morphologies was discussed. ► The appropriate Tm^{3+} concentration for the strongest UV UC emissions was found.

J. Fluorine Chem., 140 (2012) 62

Click Chemistr

rcial PEG

1. Acylation with "yne" synthol

2. "Clip" Photo-Chemistry 3. Amino-compound with Fluorine Atoms

Acylation of primary polyfluoroalkanethioamides Sergiy S. Mykhaylychenko, Nadiia V. Pikun, Yuriy G. Shermolovich Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5, Murmanska, 02094 Kiev, Ukraine A facile preparation of new NH-acyl derivatives of polyfluoroalkanethioamides. Trifluoromethyl-substituted 1,3-dithiethanes were obtained. \blacktriangleright NH-acyl polyfluoroal kanethioamides readily reacted with 2,3-dimethylbutadiene. R = Me, H(CF₂)₄ $R_{F} = CF_{3}, H(CF_{2})_{2}, C_{3}F_{7}$ $R_{F} = CF_{3}, H(CF_{2})_{2}, C_{3}F_{7}$ $R_{F} = CF_{3}, H(CF_{2})_{2}, C_{3}F_{7}$ $R_{F} = CF_{3}, H(CF_{2})_{4}, C_{F} = N_{F}, C_{F}$

► DFT calculations were used to study the angular dependence of ${}^{1}J_{CF}$ in model compounds. ► ${}^{1}J_{CF}$ in α -fluorocarbonyl compounds is described by dipolar interactions. ► ${}^{1}J_{CF}$ is also dependent on hyperconjugation in α -fluorosulfonyl models.

visible light

RB (5mol%)

Cul (10 mol%)

R

Selective trifluoromethylation and alkynylation of tetrahydroisoquinolines using visible light irradiation by Rose Bengal

Weijun Fu^a, Wenbo Guo^a, Guanglong Zou^b, Chen Xu^a

^aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, PR China

^bSchool of Chemistry and Environmental Science, Guizhou University for Nationalities, Guiyang 550025, PR China

- **►** Rose Bengal catalyzed α-trifluoromethylation and α-alkynylation of tetrahydroisoquinolines under visible light irradiation.
- ▶ The reaction via C-H activation. ▶ The reaction uses air as terminal oxidant under transition-metal-free reaction conditions.

Transition metal-free oxidation of activated alcohols to aldehydes and ketones in 1,1,1,3,3,3-hexafluoro-2-propanol

J. Fluorine Chem., 140 (2012) 88

visible light

RB (5mol%)

TMSCF₂/KF

Samad Khaksar, Saeed Mohammadzadeh Talesh

Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

► In this study we examine the HFIP as a new recyclable medium. ► Oxidation of various alcohols to their corresponding carbonyl compounds is described in HFIP. ► This method has the ability to tolerate a wide variety of substitutions. ► HFIP was easily recovered.

Graphical Abstracts

J. Fluorine Chem., 140 (2012) 107 J. Fluorine Chem., 140 (2012) 107<

Synthesis and structure of a bis-trifluoromethylthiolate complex of nickel

Cheng-Pan Zhang^a, William W. Brennessel^b, David A. Vicic^a

^aDepartment of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, HI 96822, USA ^bThe X-ray Crystallographic Facility, Department of Chemistry, University of Rochester, Rochester, NY 14627, USA

▶ Reaction of $[(dippe)NiI_2]$ with excess $[NMe_4][SCF_3]$ led to the formation of $[(dippe)Ni(SCF_3)_2]$. ▶ $[(dippe)Ni(SCF_3)_2]$ has been structurally characterized. ▶ Density functional theory calculations predict that the highest occupied molecular orbital of $[(dippe)Ni(SCF_3)_2]$ is sulfur-centered and the lowest unoccupied molecular orbital is

nickel-centered. Charge distributions on a metal–SCF₃ complex are much different than a metal–OCF₃ one.

The missing crystal structures of fluorosulfates of monovalent cations: $M(I)SO_3F$, M = Na, Rb and Tl Metal fluorosulfates Tomasz Michałowskia, Piotr J. Leszczyńskib, Michał Cyrańskia, Łukasz Dobrzyckia, Armand Budzianowski^b, Wojciech Grochala^{ab} ^aFaculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland ^bCentre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland ► structural characterization of three novel fluorosulfates of monovalent cations. ► Surprising unprecedented structure types detected for Na and Tl derivatives. ► Marked steric effects observed due to the lone pair on Tl(I) cation. J. Fluorine Chem., 140 (2012) 121 Bis(perfluorooctanesulfonyl)imide supported on fluorous silica gel: Application to R^{1} R^{2} + (RO)₃CH $\frac{1 \text{ mol% FSG-HNPf}_{2}}{\text{ROH, reflux}}$ protection of carbonyls \mathbb{R}^1 Mei Hong, Guomin Xiao School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China 1 mol% FSG-HNPf ► Fluorous silica gel supported bis(perfluorooctanesulfonyl) + HO(CH₂)₂OH -----imide was prepared. \blacktriangleright FSG-HNPf₂ was characterized by FTIR, R Toluene, reflux pyridine-FTIR and TGA. ► Several carbonyls was converted to acetals and ketals in good to excellent yields using FSG-HNPf₂. FSG-HNPf₂ catalyst can be easily recovered and reused several times without significant loss of activity.

6

J. Fluorine Chem., 140 (2012) 116